АДСОРБЦИЯ ТҮРЛЕРІ МЕН ТЕОРИЯСЫ
Қатты дене — сұйық зат жанасу шегіндегі адсорбция түрінің біріне жатаіын ион алмастыргыш адсорбцияның маңызы аса зор. Ол жан-жақты зерттелген.
Ион алмастырғыш адсорбция. Ерітіндідегі күшті электролит-тер толығымен дерлік диссоциация әсерінен иондарға ыдырайтын-дықтан, оларға кәдімгі адсорбциялық және әр түрлі электр күш-тері әсер ету нәтижесінде осы электролиттерді қатты адсорбент бетінде адсорбциялаудың өз ерекшеліктері болады. Қүшті электро-лит иондарын адсорбциялау екі тектегі күштің әсері арқылы жүре-ді екен. Олар адсорбенттің беттік молекулалық және иондар ад-сорбцияланғанда пайда болатын электр күші.
Электролит адсорбциясынын, үш түрі бар: эквивалентті; ауыс-палы; ерекше немесе таңдамалы.
Эквивалетті адсорбция кезінде электролит молекуласы түгел-дей сіңіріледі. Оны Сылай түсіндіруге болады. Берілген электро-литтің жақсы адсорбцияланатын ионы өзінің екінші нашар адсорб-цияланатын ион жұбын (электролит молекуласы екі ионнан тұра-ды) адсорбснт бетіне тартады. Мұнда екінші ионның адсорбция-ланғыш қабілсті артады да, ерітіндідегі адсорбциялайтын басқа иондар біріпші ионнын. адсорбциялануын төмендетеді. Сөйтіп екі ион да бірдей (эквиваленттілік жағдайында) адсорбцияланады, сондықтан да эквивалентті адсорбцияны молекулалық деп те атай береді. Ол әлсіз электролиттерге тән. Эквивалентті адсорбция жағдайында, фазалардың жанасу шегіндегі электр нейтралдылық сақталады.
Ал ауыспалы адсорбция қүбылысында электролит иондарының біреуі іріктеле келіп, адсорбент бетіне жақындағанда қатты ад-сорбенттен осы мәндегі зарядтас басқа ион ерітіндіге алмасады. Сөйтіп электролит ерітіндісіндегі және қатты адсорбенттегі аттас иондар бірімен-бірі орын алмасады екен. Мұндай ион алмастыру қүбылысы тепе-теңдік жағдайында, яғни эквивалентті түрде ал-масқандықтан, екі фазаның жанасу шегі әркез электр нейтралды болады. Әдетте ауыспалы адсорбция басқа адсорбциядан баяу жүреді және оны хемосорбция процесі ретінде де қарастыруға болады.
Егер ауыспалы адсорбция кезінде адсорбент өзіне сіңірген ион орньша ерітіндіге сутектің немесе гидроксидтің эквивалентті ио-
183
нын берсе, онда мұндай адсорбцияны гидролиттік деп айтады. Мы-салы, натрий хлориді, калий хлориді немесе нитраты секілді ней-трал тұздардың ерітіндісін активтелген көмір арқылы өткізсе, онда активтелген көмір осы ерітіндіден өзіне аниондарды адсорбциялап, олардың орнына гидроксил тобын береді, сөйтіп ерітінді әлсіз сіл-тілік орта көрсетеді. Олай болса, гидролиттік ауыспалы адсорбция кезінде активті бетте; жанасу шегінде болатын көптеген ауыспалы не басқа да құбылыстарға қарамастан сутек және гидроксил ион-дары алмасады.
Енді ауыспалы адсорбцияның бірер мысалына тоқталайық. Көлдер мен өзендерде, су қоймалары мен тоғандарда кездесетін суды техникалық су дейді. Олардьщ құрамында көбіне кальций, магний, натрий, калий сияқты химиялық элементтердің иондары болады. Ондай суды кермек су дейді. Онда әсіресе, кальций мен магний тұзы зиянды. Оны тазалау, яғни тұщылау үшін адсорбция-дағы ион алмасуды пайдаланады. Мысалы, техникалық суды тұ-щылау үшін табиғи силикаттар — цеолиттер мен глаукониттер қолданылады. Қейде жасанды әдіспен синтезделген сілтілік метал-дардың алюмосшшкаттары пайдаланылады. Мұндай техникалық суды тазалауға арналған күрделі силикатты қосылыстарды пер-мутиттер деп атайды. Осындай пермутиттің суды тазарту, тұщылау схемасын қысқаша төмендегіше көрсетуге болады:
пермутит-2Nа’*’| + Са2+ + S0 |пермутит-Са+2NaSO
2*
Пермутиттерді қолдану арқылы техникалық судың кермектігін жоюға болғанмен, судағы қалған басқа да катиондар мен анион-дардан толық арылу мүмкін емес. Суды толық тазарту ісі тек соң-ғы кезде ғана ион алмастырғыш заттардың пайда болуына байла-нысты дұрыс жолға қойылып, жүзегө аса бастады. Ион алмастыр-ғыш заттарды иониттер деп те айтады. Иониттерді жогары моле-кулалық көмірсутекті тізбектен алынған полимер кұрамына ионо-генді (SО3Н, СООН, NН2) топтарды енгізу арқылы алады. Ионит-тердің бір түрі қышқылдық сипатта болады, яғни олардың беткі қабаты теріс зарядталғандыктан, олар сутек ионын кез келген катионға алмастыра адсорбциялайды. Мұндай иониттерді катио-ниттер деп атайды. Иониттердің басқа негіздік сипаттағы түрін аниониттер дейді. Бұл иониттерден әзірленген адсорбенттер ерітін-дідегі аниондарды тек гидроксил анионымен алмастыра адсорб-циялайды.
Үнтақталған катиониттер мен аниониттер қабаттарынан әзір-ленген сүзгіш аркылы өткізілген техникалық су, өзіндегі анионда-ры мен катиондарын ион алмастырғыш иониттерге беріп тазала-нады. Осылайша тұщыланған су өзінің тазалығы мен сапасы жағы-нан қайнатып алынған судан кем түспейді.
Иониттер көмегімен жүретін су тазарту процесін (тұщылау) жалпы былай көрсетуге болады:
184
Катиониттегі реакция
катионит.2Н+| + катионит.
катионит-2Н+|+ катионит
катионит катионит
|
||
|
|
Аниониттегі реакция
Анионит анионит
анионитанионит
Суды тазарту кезінде катионит пен анионитті өзара тепе-тең-дікте, яғни эквиваленттік жағдайда алу қажет. Біраздан соң ио-ниттер өзіндегі иондар таусылғандықтммммман, әсерін жояды. Мұндайда, егер ионит катионит болса, оның әуелгі активтілігін орнату үшін 3—5%-тік күкірт не тұз қышқылы ерітіндісімен өңдейді. Мұнын, нәтижесінде катиониттер сутек иондарымен қайтадан “зарядталады”:
катиониткатионит
Аниониттердің активтілігін қайтадан орнату үшін, көбінесе, 5%-тік күйдіргіш калий немесе күйдіргіш натрий ерітіндісімен өңдейді:
анионитанионит
Ион алмастырғыш заттар — иониттер өмірде, өндірісте жиі қолданылады. Өндірісте пайдаланылған сулар, ерітінділер көпке дейін далаға төгіліп, босқа рәсуә болатын. Олардың құрамында сирек, зиянды қосылыстар мен түрлі иондар өте аз мөлшерде бол-са да кездеседі. Енді оларды иониттер арқылы тазалайды. Бұл әдістің басқа әдістерге қарағандағы тиімділігі — ол бөлінетін ион-дардың концентрациясын көбейтуге мүмкіндік беруінде. Тазартыл-ған суды қайтадан өндірісте пайдалануға болады. Мысалы, бояу өндіру кезінде хром, никель, мыс, мырыш, ал жасанды талшық өндіргенде мыс иондары мен радиоактивті иондар бөлініп алы-нады.
Ион алмастырғыш заттар қазір тамақ өнеркәсібінің көп сала-ларында пайдаланылады. Олар қант, шарап, сыра заводтарында, сүт өнімінде қолданылады. Мысалы, кесілген қант қызылшасын және қосымша еріген заттарды ыстық сумен араластырғанда, ыды-
185
рау және еру процесінің әсерінен олардың кұрамынан көптеген органикалық, бейорганикалық қосылыстар бөлінеді. Оның 15 про-центтейі керексіз қосылыстар. Оны жоғары сапада тазалау үшін ең алдымен күшті негіздік аниониттер, соиан соң катиониттер ар-қылы бөлініп шыққан ерітіндіні тағы да әлсіз негіздік аниониттер-ден өткізеді.
Сол сияқты иониттер арқылы жеміс-жидек шырындарын зиян-ды органикалық және минералды қосылыстардан тазартып, жа-рымсыз иістерден айырады. Жоғары сапалы таза иониттерді пай-даланып шарап, сыра құрамындағы темір иондарын басқа да зат-тарды бөледі. Ал ашытқы өндірісіндегі меллас құрамындағы ке-рексіз қосылыстарды тек иониттер көмегімен ғана тазалауға болады.
Сондай-ақ, ион алмастырғыш заттар — сүт заводтарында ашы-туға және сүттің құрамын тұрақтандыруда таптырмайтын зат. Егер сиыр сүтін катиониттің Nа түрі арқылы өткізсе, оның химиялық құрамы мен қасиеті ешбір өзгеріссіз қалып, құрамындағы, әсіресе, жас сәбиге пайдасы аз кальций мен магний иондары катионитке өтіп, сүттін, құрамы ана сүтіне жақындайды. Сүттен қатық, ірімшік, сүзбе алуда иониттердің атқаратын ролі өте зор.
Қатты адсорбентке ерітіндідегі иондардың тек белгілі тектегі түрі ғана адсорбцияланатын адсорбция түрін арнайы адсорбция немесе потенциал анықтаушы иондар адсорбциясы дейді. Мұндай-да катиондар немесе аниондардың біреуі қатты адсорбент бетіне (үстіне) ешбір ионмен алмаспай-ақ орналасып, оның беткі қаба-тына өз зарядын орнатады. Адсорбцияның бұл түрі, әсіресе, кол-лиоидты системалар үшін аса қажет, оның әсерінен қос электрлік қабат пайда болады.
Адсорбцияның БЭТ теориясы. Бүл теорияны адсорбцияға арнап 1945 жылы ғалымдар Брунауэр, Эммет, Тэллор үсынды және осы авторлар фамилияларының бас әріптерінен кыскартылып, ол ад-сорбцияның БЭТ теориясы деп аталады. БЭТ теориясы адсорбция-дағы Ленгмюрдің динамикалық сипатын сақтап қалған. Бұл тео-рия бойынша адсорбция көп қабатты болып есептеледі. Осы көп қабаттың біріншісі адсорбент — адсорбат арасындағы молекула-аралық әрекеттесу әсерінен пайда болады, яғни адсорбент бетінде-гі бірінші молекула қабаты құралады. Енді осы бірінші кабаттағы әрбір адсорбцияланған молекула келесі адсорбциялық кабатты тү-зуші орталыққа немесе тартушы күшке айналады. Осылайша екін-ші қабаттағы әрбір молекула үшінші кабатты түзуші орталыққа айналады, өстіп кабат саны арта береді. Оның пайда болу үлгісі 45-суретте кескінделген.
Бірінші қабаттагы адсорбция жылуы адсорбент — адсорбат арасындағы әрекеттесу әсерімен анықталады, ал қалған екінші, үшінші қабат арасындағы мұндай жылу адсорбцияланатын моле-кулалардың өзара тартылысы арқылы сипатталады. Сондықтан да екінші кабаттан бастап, олардағы адсорбция ЖЫЛУЫ сондағы молекулалардың конденсацияланган жылуына тең. Екінші және келесі қабаттардың пайда болуы бірінші қабаттың әлі бітпеген
186
45-сурет
кезінде де бастала береді. Әрбір адсорбциялық қабат өзін қорша-ран ортамен және көршілес өзге қабаттармен әркез динамикалық тепе-теңдікте болады. Ондай тепе-теңдіктегі адсорбциялық кабат үлгісі 45-суретте көрсетілген.
Капиллярлық конденсация. Адсорбциямен қатар капиллярлық конденсация құбылысы, яғни қаныққан бу қысымы аз кездегі адсорбат буының конденсациясы байқалады. Адсорбция кезінде адсорбент қуысындағы ішкі қабырғалар адсорбцияланатын заттың буымен өте жұқа пленка болып жабылады (астарланады). Олар сұйықпен жақсы жұғысады. Мұндағы тепе-теңдік қысымының қа-ныққан будың серпімділігінен кіші болатыны физикадан белгілі. Сондықтан да адсорбент қуысындағы қаныққан бу кіші қысым кезінде де конденсациялана береді.
Капиллярлық конденсациямен сорбциялық гистерезис құбылы-сы жиі байқалады, адсорбция мен десорбция изотермаларының бірдей бола бермеуінен адсорбциямен салыстырғанда десорбция құбылысы кіші қысымда баяу жүреді. Қапиллярлық конденсация кезіндегі гистерезис құбылысының пайда болуына физикалық ад-сорбцияның қайтымдылығымен қатар, адсорбент қуыстарының түрі, қисықтығы, бірдей болмауы әсер етеді.
Хроматография. Қазір ғылми-зерттеулер мен қолданбалы зерт-теулерде сорбциялық кұбылыс көмегімен аса күрделі қосылыстар-ды бөліп, таза күйінде алудың маңызы зор. Бұл мәселені сәтті шешу ісінде адсорбциянын, бірі болып саналатын хроматография-ның орны ерекше. Ол — көптеген талдау, сипаттау, органикалық бірегей қосылыстағы әрбір изомерді бөлу ісінде таптырмас әдіс.
Қоспа құрамындағы компоненттердің сорбциялану қабілеті мен жылдамдығының айырмасы сорбент түйіршігі арқылы қоспа ері-тіндісі жылжығанда айқын байқалады. Әдетте сорбент бетіне жақ-сы сорбцияланатын қосылыс берік орналасатын (байланысатын) болғандықтан, кідіріңкірейді және осы молекулалық қабат сор-бент бетімен (бойымен) баяу жылжиды. Бұл құбылысты 1903 жы-лы орыстың ғалым-ботанигі М. С. Цвет жасыл жапырақты осы түске бояп тұратын күрделі органикалық қосылысты (пигментті) бөліп алып, оның қүрамы мен қасиетін зерттеу кезінде ашқан. Ол бір үшында шүмегі бар ішіне алюминий оксиді толтырылған шыны түтікті тік орналастырып, онын, жоғары жағынан әлгі өсімдік жа-пырағынан алынған ерітіндіні бояп, құяды. Шамалы уақыт өткен-де, ірілігі өзара біркелкі үсақталған сорбент міндетін атқаратын алюминий оксиді әр түске боялған және бірінен-бірі белгілі қа-шықта орналасқан бірнеше сақина секілді бөлшекке бөлінген
187
сары
көк
қоныр
қоспа құрамына таралу механзимі Бұл таралу меха-
46-сурет
(46-сурет). Бұл әдіс алғашқыда түрлі-түсті А12 0} бояуға байланысты болғандықтан, оны Цвет хроматография деп атаған. Ол атау сол күйі сақталса да, оның түрі мен әдісі өте көп және олар ешбір бояусызақ жүргізіледі.
Қазіргі хроматографиялық талдау әдісі — бір фазада басқа бірнеше компонент-тен тұратын басқа фазаның жылжу жыл-дамдығына негізделген физикалық-химиялық бөлу процесі.
Фаза араларындағы енетін компоненттердің екі түірлі болуы мүмкін. низмі бойынша адсорбциялық және таралу хроматографиясы болып бөлінеді. Ал агре-гаттың күйге байланысты таралу механизмі жылжитын және жылжымайтын фазаға жіктеледі. Мұнда адсорбциялық механизм бойынша журетін қатты дене жылжымайтын, газ жылжитын фазадан тұратын газды немесе газ-адсорбциялық хроматографияға, ал таралу механизмімен жүзеге асатын жоғары температурада қайнайтын сұйық фаза жылжымайтын, газ жылжитын фазадан түратын газ-сұйықтық хроматографияға бөлінеді. Бұлар күрделі органикалық қосылыс құрамын анықтауға, жалпы аналитикалық химияда, өндірістік лабораторияларда кең қолданылады.
Жылжымайтын сұйық фазаны орналастыру әдісі де сан алуан. Олардың арасында аса кең тарағандардың бірі — 4б-суретте көр-сетілгендей колонкалы хроматография. Шыны не металл колонка-сын (түтікті) ірілігі біркелкі сорбатпен толтырады. Ал оның келесі түрі лабораториялық талдауда жиі қолданылатын, 47-суретте көр-сетілген қағазды хроматография әдісі. Ондағы жабық шыны ішін-дегі бөлінетін компонент ерітіндісі арнаулы қағаз бойына соры-лып, жоғары жылжығанда әр түрлі биіктікке көтеріледі. Сондай-ақ сұйықты хроматографияның тағы бір тү-рінде, қозғалмайтын фазаны фольга, қағаз сияқтыларға өте жұқа, біркелкі қабат етіп бекітеді де, одан бөлінетін компоненттер қоспасының ерітіндісін жылжытады.
Соңғы жылдары капиллярлық сұйықтық хроматография әдісі кең қолданылуда. Онда өте жіңішке капилляр ішіне жылжымайтын сұйық фазаны орналастырады. Ал газды хроматография өзінің өте тез нәтиже беруімен катар, тек аналитикалық талдау әдісінде ғана емес, өндірістегі колданбалы ғылыми зерттеулерде қажетті заттардың құрамын, адсорбция 47-сурет жылуын, өзара әрекеттесу кезіндегі активтілік коэффициентін, тағы да басқа сипаттарын анықтауға қолданы-лады.